Finding and Using Solubility Products

The value of K_{sp} for a substance is calculated from the concentrations of ions at equilibrium. As an example, consider a particular experiment in which AgCl(s) is added to pure water and allowed to come to equilibrium with a solution of its ions at 25°C.

$$AgCl(s) \Leftrightarrow Ag^+(aq) + Cl^-(aq)$$

At equilibrium, $[Ag^+] = 1.3 \times 10^{-5} M$ and $[Cl^-] = 1.3 \times 10^{-5} M$. Inserting these values into the solubility product expression yields the value for K_{sp} .

$$K_{sp} = [Ag^+][Cl^-]$$

= (1.3×10⁻⁵)(1.3×10⁻⁵)
= 1.7×10⁻¹⁰

Example 1

At 25°C, the concentration of Pb^{2+} ions in a saturated solution of PbF_2 is $1.9 \times 10^{-3} M$. What is the value of K_{sp} for PbF_2 ?

The included chart shows the K_{sp} values for a number of substances at 25°C. As with other equilibrium situations, the value of the solubility product gives us important information about the reaction. A small value of K_{sp} indicates that a substance is not very soluble in water.

It is important to distinguish between the solubility of a given solid and its solubility product. The solubility is the amount that can dissolve in a given solvent. Solubility is an equilibrium position and has an infinite number of possible values at a given temperature, depending on what other solutes are present. The solubility product, on the other hand, is a constant and has only one value for a given solid at a given temperature.

The **molar solubility** of a solid is the number of moles of that solid that will dissolve per liter of solvent. If you know the K_{sp} value for a solid, it is possible to determine its molar solubility using an ICE table.

Example 2

What is the molar solubility of silver carbonate (Ag_2CO_3), given that it has a $K_{sp} = 6.3 \times 10^{-12}$?

So far we have used the equilibrium concentrations of ions in a saturated solution to calculate the value of the solubility product. We have also used the value of the solubility product to determine the molar solubility of a solid. It is also possible to use the value of the solubility product to predict the equilibrium concentrations of ions in a saturated solution.

Example 3

What will be the equilibrium concentrations of the dissolved ions in a saturated solution of $CaSO_4$ at 25°C?

Example 4

What will be the equilibrium concentrations of the dissolved ions in a saturated solution of $Mg(OH)_2$ at 25°C?

Worksheet

- 1. A sample of $Cd(OH)_2(s)$ is added to pure water and allowed to come to equilibrium at $25^{\circ}C$. The concentration of Cd^{2+} is $1.7 \times 10^{-5} M$ at equilibrium. What is the value of K_{sp} for $Cd(OH)_2$?
- 2. A sample of $Ce(OH)_3(s)$ is added to pure water and allowed to come to equilibrium at $25^{\circ}C$. The concentration of Ce^{3+} is $5.2 \times 10^{-6} M$ at equilibrium. What is the value of K_{sp} for $Ce(OH)_3$?
- 3. A sample of $SrCO_3(s)$ is added to pure water and allowed to come to equilibrium at $25^{\circ}C$. The concentration of Sr^{2+} is $4.0 \times 10^{-5} M$ at equilibrium. What is the value of K_{sp} for $SrCO_3$?
- 4. At 18°C, the concentration of Pb^{2+} ions in a saturated solution of lead oxalate (PbC_2O_4) is $5.23 \times 10^{-6} M$. What is the value of K_{sp} for PbC_2O_4 ?
- 5. What is the molar solubility of silver bromide (AgBr) at $25^{\circ}C$?
- 6. What is the molar solubility of tin(II) hydroxide $(Sn(OH)_2)$ at $25^{\circ}C$? $(K_{sp} = 1.4 \times 10^{-28})$
- 7. What are the equilibrium concentrations of Ca^{2+} and F^{-} in a saturated solution of CaF_2 ? ($K_{sp} = 3.9 \times 10^{-11}$)
- 8. Calculate the number of moles of $BaCrO_4$ that must dissolve to produce 1.0 L of a saturated solution at $25^{\circ}C$.
- 9. What are the equilibrium concentrations of the dissolved ions in a saturated solution of $Fe(OH)_2$ at 25°C?
- 10. What are the equilibrium concentrations of the dissolved ions in a saturated solution of Ag_2SO_4 at $25^{\circ}C$? ($K_{sp} = 1.2 \times 10^{-5}$)